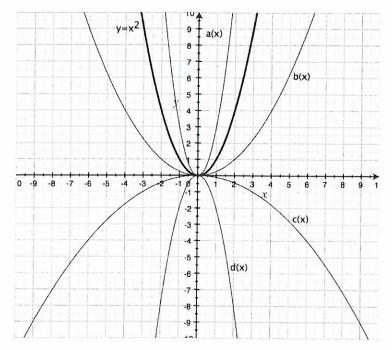
Transformations and Translations

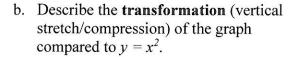
Part 1: Basic Transformations

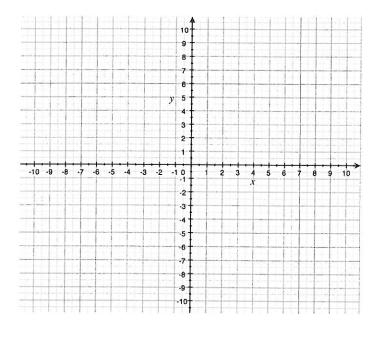

1) All of the graphs on the coordinate plane are transformations of $y = x^2$. Write the function of each graph. Check your answers by graphing them on the calculator.

$$a(x) =$$

$$b(x) =$$

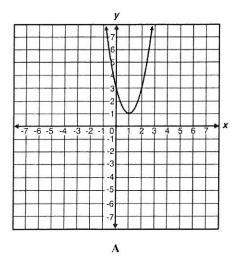
$$c(x) =$$

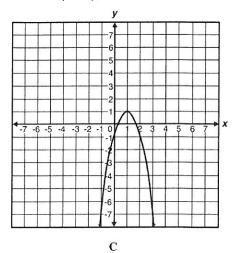

$$d(x) =$$

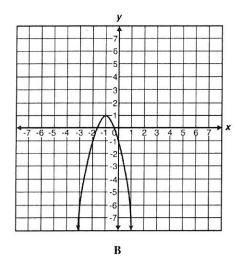


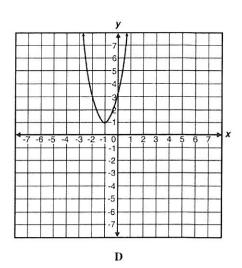
Part 2: Applying Translations and Transformations

- 1) Graph $y = x^2$ on the coordinate plane below.
- 2) Given that $f(x) = \frac{1}{2}(x-3)^2 8$,
 - a. Describe the translation (horizontal/vertical shift) of the graph compared to $v = x^2$.




- 3) Use your answers to question 2 to graph $f(x) = \frac{1}{2}(x-3)^2 8$. Follow the order of operations. To do this, start by looking at a point on the original graph. Then:
 - a. Translate it horizontally (move the point _____ by ____ spaces).
 b. Transform it vertically (multiply the current y-coordinate by _____, and
 - move the point there).
 - c. Translate it vertically (move the point ______ by ____ spaces).
 - d. Plot the new point in its final location.
 - e. Repeat until you have enough points to make a good sketch of f(x).
- 4) Fill in the table. Are the points in your table on the graph of f(x) that you already made?


x	$f(x) = \frac{1}{2}(x-3)^2 - 8$
-2	
-1	
0	
1	
2	
3	
4	
5	
6	
7	
8	


Part 3: Multiple Choice Practice

1) Which of the following is the graph of $f(x) = -2(x-1)^2 + 1$?

2) Explain how you can answer #1 without doing any calculations.

- 3) Which of the following most accurately describes the translation of the graph of $y = (x+3)^2 2$ to the graph of $y = (x-2)^2 + 2$?
 - a. up 4 and 5 to the right
 - b. down 2 and 2 to the right
 - c. down 2 and 3 to the left
 - d. up 4 and 2 to the left

- 4) Which of the following is true about the graphs of $f(x) = \frac{3}{4}(x-5)^2 + 1$ and $f(x) = 2(x-5)^2 + 1$?
 - a. The graphs have the same shape and the same vertex.
 - b. The graphs have different shapes and the same vertex.
 - c. The graphs have the same shape and different vertices. ("vertices" is the plural of "vertex")
 - d. The graphs have different shapes and different vertices.
- 5) Given that the point (-2, 6) is on the graph of y = f(x), what point **must** be on the graph of y = 3 f(x)?
 - a. (-2, 18) b. (-6, 6) c. (-2, 2) d. (-6, 18)

- 6) Given that the point (4, -8) is on the graph of y = f(x), what point **must** be on the graph of $y = -\frac{1}{10}f(x)$?
- a. (0.4, -8) b. (4, -0.8) c. (-0.4, -8) d. (4, 0.8)
- 7) Given that the point (0, 12) is on the graph of y = f(x), what point **must** be on the graph of $y = \frac{1}{2}f(x+5) - 6$?
 - a. (5,0) b. (-5,6) c. (-5,0) d. (5,-6)